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Kreitzberg, Patrick A., M.S., June 2019 Computer Science

Zero-knowledge de novo algorithms for analyzing small molecules using mass spec-

trometry

Chairperson: Oliver Serang

In the analysis of mass spectra, if a superset of the molecules thought to be in a
sample is known a prior:, then there are well established techniques for the identifi-
cation of the molecules such as database search and spectral libraries.

Linear molecules are chains of subunits. For example, a peptide is a linear molecule
with an “alphabet” of 20 possible amino acid subunits. A peptide of length six will
have 20° = 64, 000,000 different possible outcomes. Small molecules, such as sugars
and metabolites, are not constrained to linear structures and may branch. These
molecules are encoded as undirected graphs rather than simply linear chains. An
undirected graph with six subunits (each of which have 20 possible outcomes) will

have 20° - 2(2) — 2,097,152, 000, 000 possible outcomes. The vast amount of complex
graphs which small molecules can form can render databases and spectral libraries
impossibly large to use or incomplete as many metabolites may still be unidentified.

In the absence of a usable database or spectral library, an the alphabet of subunits
may be used to connect peaks in the fragmentation spectra; each connection represents
a neutral loss of an alphabet mass. This technique is called “de novo sequencing” and
relies on the alphabet being known in advance.

Often the alphabet of m/z difference values allowed by de novo analysis is not
known or is incomplete. A method is proposed that, given fragmentation mass spec-
tra, identifies an alphabet of m/z differences that can build large connected graphs
from many intense peaks in each spectrum from a collection.

Once an alphabet is obtained, it is informative to find common substructures among
the peaks connected by the alphabet. This is the same as finding the largest isomor-
phic subgraphs on the de novo graphs from all pairs of fragmentation spectra. This
maximal subgraph isomorphism problem is a generalization of the subgraph isomor-
phism problem, which asks whether a graph G has a subgraph isomorphic to a graph
(5. Subgraph isomorphism is NP-complete.

A novel method of efficiently finding common substructures among the subspectra
induced by the alphabet is proposed. This method is then combined with a novel
form of hashing, eschewing evaluation of all pairs of fragmentation spectra. These
methods are generalized to Euclidean graphs embedded in Z".
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CHAPTER 1 INTRODUCTION

Mass spectrometry (MS) is a method for finding the mass of analytes in a sam-
ple with the goal of characterizing the sample. These masses are often much too
small to use a conventional scale. A sample, which may first be fragmented into its
molecular pieces, is ionized. These ions are then separated based on their mass-to-
charge ratio (m/z); thus, mass spectrometry actually finds the m/z of the ions, not
simply the mass. There are multiple techniques to separate the ions by their m/z
values. One technique is time-of-flight (TOF) mass spectrometry. In a TOF machine
an ion’s m/z is calculated by sending it through a tube with an electric field across
it and calculating its velocity (figure . Tandem mass spectrometry (also known
as MS/MS) is a technique in which multiple rounds of mass spectrometry may be
performed on a sample. An earlier round of mass spectrometry can be used to select
intact molecules by “precursor” mass-to-charge, and then the analytes are fragmented
into the molecular components. The mass-to-charge of these fragments are estimated
using a subsequent round of mass spectrometry.

The data produced by mass spectrometry is a collection of spectra where each
spectrum is typically represented as a series of peaks with each peak representing
an ion. A peak’s placement along the m/z axis marks the ion’s m/z value and the
peak’s height is the intensity of the ion (figure . If the molecules in the sample

fragment when performing mass spectrometry, the output is typically referred to as
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Constant Electric Field
(with potential U)

Sou rce Sensor
O_) o—
o—>
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Potential Energy Kinetic Energy m 2U
Ep = zU E,= —mv z v

Figure 1.1 Diagram of time-of-flight mass spectrometry. An ionized
sample is put into a tube which has a constant electric field across
it. The electric field causes the ionized sample to move through
the tube. From the constant electric field, the potential energy,
which is converted into kinetic energy, can be calculated. From
the potential and kinetic energy, the velocity, which depends on
the m/z of an ion, may be calculated. If two ions have the same
charge, the lighter one will reach a higher speed.
fragmentation spectra. Intensity values can be thought of as roughly proportional
to the abundance of the ion, so a single peak does not represent a single ion in the
sample, it may represent many ions with the same m/z value. The scale of the
intensity values are not necessarily the same for all mass spectrometry techniques or
all machines.

The difference between two peaks m/z value is also an m/z value. Sometimes, but
not always, this m/z value represents another ion in the sample, or one that used
to be in the sample such as a metabolite which was created then destroyed during
digestion. For example, if the difference between two peaks is the mass of water,
then it is possible the larger peak lost a water molecule with charge 1 to become the
smaller peak.

The mass spectrometric analysis of structured molecules is important for analysis

of glycoconjugates [1] and for drug discovery [2]. Often these methods cannot rely on
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Intensity

A B B —_— 5
n n A8’
m/z
Figure 1.2 On the left, a representation of a spectrum with a set
of peaks that are linked together by de novo sequenc-
ing. On the right, a graph with a bijection to the set of
peaks linked together by de novo sequencing A cartoon of
a typical representation of data generated by mass spectrometry
with peaks linked together by masses in the alphabet {A, B}.
Each peak represents an ion whose m/z value is the same as the
peak. The height of the peak is the intensity of the ion, which
can be thought of as roughly proportional to the abundance of
the ion. Peaks are linked by a mass in the alphabet if the differ-
ence in the peaks is equal to the mass divided by some charge.
The graph is created by forming a bijection between the nodes in
the graph and the set of peaks in the spectrum connected by de
novo sequencing. An edge exists between two nodes if the two

peaks they are projected onto are connected by an m/z value in
the alphabet.

machine-generated databases (as can often be done for peptide search) because of the
combinatoric nature of these small molecules, which would make a machine-generated
database far too large to use. Fragmentation trees may be used for analysis of small
molecules where databases may not exist or are too large, but they rely on enumer-
ating all molecular formulas that match the precursor mass [3]. Enumerating over
all molecular formulas for a precursor mass can become very costly, particularly for

a larger precursor mass or with a fairly imprecise mass-to-charge measurement; thus,

fragmentation trees may not be suitable in all cases. Spectral libraries generated by
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known small molecule content can be used, but they need to be painstakingly curated
from a myriad of potential molecules of interest; therefore, even if the resources are
available to do so, they may not be suitable for applications that include unexpected
compounds or reactions. Likewise, when an MS1 spectrum is generated by few intact
molecules, it may be possible to isolate the most abundant mass in the spectrum
using only Fourier analysis [4].

To date, de novo approaches, which link peaks in fragmentation spectra when they
are different by a mass in the alphabet, are the best tools for these problems. For
example, de novo peptide sequencing may be performed using an alphabet of 20 amino
acid masses, whereas de novo glycan analysis may be performed using an alphabet of
four common sugar residues. Once an alphabet is known, dynamic programming can
be used to link peaks for linearly chained molecules (e.g., peptides) [5][6] or arbitrarily
structured small molecules (e.g., sugars) [7][8]. The ability to use certain “characters”
in the alphabet can also be constrained to an arbitrary flow chart (for instance, it
may state that a peptide with more than two of a given amino acid should not be
considered) by performing dynamic programming on the Cartesian products between
the graph of linked peaks and the flow chart from the constraints [9]. Distinctions
between fragmentation spectra can also be used to build graphs for a given alphabet
by clustering spectra to find highly similar neighbor spectra and then attempting
to match small changes between these neighboring spectra using the given alphabet
[10]. Approaches reminiscent of this can be used to better characterize biochemical
pathways [11].

All above approaches need to know the alphabet, i.e., the masses considered during
the de novo; however, in a truly blind de novo application, this alphabet will not
be known. This is important when identifying active compounds and therapeutic

components in venoms [12] or plant products [I3] and can similarly be significant
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when finding drug metabolites produced. Even fundamental chemical components
of the sugar alphabet (such as O-GlcNAc-P) were only discovered relatively recently
[14]; thus, if there are more undiscovered components of the sugar alphabet, then any
current sugar alphabet will be incomplete and a blind approach may be the only way
to use these undiscovered sugars in an alphabet.

Two approaches with partially blind aspects to them are the offset frequency func-
tion and spectral networks. The offset frequency function, introduced by Dancik et
al. [I5], builds a de novo graph using the amino acid alphabet, and then builds the
empirical distribution of peak differences between peaks in the de novo peptide path
and peaks not in the de novo peptide path; however, this approach needs to know
the amino acid alphabet in advance. Spectral networks [16] are likewise used for the
analysis of peptides. For example, a pair of spectra matching peptides with either
overlapping sequences (e.g., EEAMPN and AMPNGGR)— or a pair of modified and un-
modified peptide spectra— can be matched by sequence overlap after database search
and then differing peaks in a spectral pair can elucidate sequence changes, modifica-
tions, etc. Like the offset frequency function, this approach relies on knowledge of
the amino acid alphabet and methods for sequencing peptide spectra (either de novo
or database search) via that amino acid alphabet.

In this paper we introduce an approach to perform blind de novo analysis of mass
spectra, and to estimate an alphabet from a collection of spectra (i.e., the “alphabet
projection of the spectra”). Our approach seeks to find the alphabet that would best
explain the most high-intensity peaks and simultaneously build the largest connected
graphs. This approach is also informative as to which peaks can be linked by this
alphabet; the graph produced by linking peaks in a de novo manner can be helpful to
inferring the chemical structure of a compound. In this manner, the method proposed

can also be seen as an unsupervised de novo approach (i.e., a de novo approach where
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the alphabet is not known in advance).

When de novo sequencing is applied to spectra it is possible some real structure
is connected to an extraneous peak by random chance. It is unlikely this same peak
is connected by random chance in multiple spectra, but the connected peaks in the
underlying structure should almost always be there if the compound is. This re-
curring structure is trustworthy; if found throughout multiple spectra, it is likely
to be important to the sample. Finding different compounds with similar chemical
structures may also play an important role in pharmacological research. For exam-
ple, the drugs Famprofazone and Deprenyl both metabolize into amphetamine and
methamphetamine which have very similar structures [17][18].

A new approach is introduced to efficiently find recurring chemical structures in
many spectra. The approach develops a new method for performing maximal sub-
graph isomorphism on de novo graphs from two spectra. It is then improved with
locality sensitive hashing to do this without comparing all pairs of fragmentation
spectra. This method is generalized to efficiently find isomorphic subgraphs among

graphs embedded in Z™.
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CHAPTER 2 METHODS

Variable Meaning

s® | The indices of peaks in a fragmentation spectrum .

mgg) for i € s | The m/z of peak i in spectrum s(0).

pge) for i € s() | The intensity of peak i in spectrum s(©).

D® | The set of s, m9, and p® for spectrum .

my) - mz(.z) fori € s, 5 €s® | The m/z difference between peaks j and ¢ in spectrum FON

A1,A2,As,...Ay | The alphabet of size d (units are mass, not m/z).

The maximum allowed error tolerance in m/z; if two m/z
e | values are approximately equal, the absolute value of their
difference must be < e.

) 1 if peaks i and j in spectrum s can be connected by
Ei’z’j’k forie s®,jes® ke{l,2,...d} | difference A, using charge z; i.e., |m§e) — mge) — %| <e
for some charge state. 0 otherwise.

Eg) The set of all edges for spectrum ¢ that use charge state z.

The collection of edges in the connected components of the
graph defined by ng).
A hyper-parameter that can be tuned to influence the ac-

g(BY) = {er,e2,...}

0 ceptance rate. € = 0 will accept all proposed changes,
0 = oo will only accept changes that improve the likeli-
hood.

Table 2.1 This table defines the notation used throughout the pa-
per. In each spectrum s, a peak i € s) has m/z value mZ@,
)

with machine tolerance €, and intensity pl(-e); the set of s\, mgz ,

and pge) for all peaks in spectrum ¢ form D®. The alphabet of

size d, A1, Ag, As, ... Ay, is used to form a set of edges, Egé), for
charge state z and the set of edges form connected components,
g(Eg)) = {ey, ey,...}, of the graph defined by EY.

from Table to formalize the alphabet projection problem:
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We use variables ¢ and j to index peaks in the spectra, while we use variable k£ to

index the alphabet. For variables ¢ and 7, assume that the indices are ordered so that

©) O

the masses are sorted in ascending order: m;” > m;

7>

2.1 Convex optimization

2.1.1 Linear and quadratic programming

Linear programming is a method to solve a class of optimization problems char-
acterized by an objective function and a set of constraints. For instance, if you are
a diary farmer, optimization can help you decide what amount of butter, 2% milk,
skim milk, etc. to create to maximize your profits. The constraints would be the
total amount of milk you have from your cows, how much milk-fat it takes to make
each product, etc. The solution will be a set of variables: volume of butter to make,
2% milk, skim milk, etc. and the optimal value of the objective function. Linear
programs (LPs) with linear constraints can be solved efficiently, even in the worst
case [19].

Formally, in linear programming the aim is to optimize an linear objective function
according to a set of constraints which are affine inequalities. An affine equation is a

linear equation plus a constant. The problems are usually represented using matrix

notation:
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minimize

such that
A-z<b

x> 0.

An integer linear program (ILP) is an LP in which all the variables are confined to
be integers. Minimum vertex cover can be reduced to an ILP, proving that solving
ILPs is NP-hard. For a graph G(e,v), the minimum vertex cover problem finds a
set of nodes in GG such that every edge in GG is connected to a node in the set. The

following ILP can solve minimum vertex cover:

minimize

Z n (2.1a)

veV

subject to
Vuv € E, yy +yy > 1 (2.1b)
YoeV, y, >0 (2.1c)
YoeV, y, €Z (2.1d)

In ILP (2.1), y, is an indicator variable which is which is at least one if vertex v is
included in the set cover. Constraint (2.1b]) forces at least one vertex for every edge

to be in the set cover. Constraints (2.1c)) and (2.1d)) force y, to be either zero or at
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least one. Then minimizing over the sum of the indicator variables is the same as
finding the minimum set cover.

Mixed integer programs (MILP) are linear programs where some variables are con-
tinuous and some are confined to be integers. MILPs are also NP-hard as they are a
generalized version of ILPs.

A quadratic program (QP) is similar to an LP but the objective function has
quadratic terms. In general, solving QPs is NP-hard [20]; though, there are special
cases where they can be solved efficiently.

If an LP, ILP, MILP, or QP has quadratic constraints then the program is “quadrat-
ically constrained” and their abbreviations are prefixed with “QC”. Making more gen-
eral constraints is typically considered more difficult than doing so to the objective

function.

2.1.2 Original quadratically constrained linear program

The first approach towards finding an alphabet was to use convex optimization

to minimize the size of the alphabet while maximizing the number of high intensity
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peaks connected by the alphabet. This was the very first formulation of a QCLP:

minimize
1Al (2.2a)
subject to
Zpi%' > (2.2b)
Vi, ¢; < Ze&?}k (2.2¢)
Gk
Vi, q; € {0,1} (2.2d)
Vi, gk, el), € {0,1} (2.2¢)
Yk, Vi#jes, —e<el) (mj—mi—Ay) <e (2.2f)
Vk e {1,2,...n}, Ay € {1 xN,2xN,...,dx N}. (2.2g)

The inputs s,n, v, e are all seen as constant by the linear program. ¢; values are
binary indicator variables which are 1 if peak i is touched by a A in the alphabet.
Constraint (2.2bf) requires the sum of the intensities of peaks connected by the al-

phabet to be at least 7, which is a hyper-parameter. Constraint (2.2f]) forces the Ay

)
i7j7k

values to be near m; — m,; for some 4,5 € s and then constraint turns on e
if m; and m; can be connected by Ay.

These constraints set up the bounds of the problem, then the linear program will
minimize the alphabet in order to minimize the objective function.

Constraint was never implemented but could further refine the alphabet by
only allowing values which were multiples of a neutron mass; however, this would

not always be realistic, for there are plenty of compounds which are not an integer

multiple of the neutron mass (e.g. the atomic mass of alanine is 70.4... x N).
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2.1.3 Minimal quadratically constrained linear program

In order to reduce the number of variables of (2.2)), the QCLP was compressed to an
equivalent problem that excludes the ¢; variables. Constraint ([2.3d)) has a quadratic

term, el - Ay, so the problem is still QC.

Z]k

minimize
N 230
subject to
o (S i) =1 o
J#ik
Vi, gk, el), € {01} (2.3¢)
€2 ez(,?,k(mj —m; — Ap) > —e. (2.3d)

2.1.4 Lagrangian relaxation

Lagrangian relaxation is a method of approximating a problem with a difficult
constraint by using a series of problems with simpler constraints and more complex
objective functions. The new problem should be many times faster to solve so that
in between iterations the parameters can be adjusted. In this case we use Lagrangian
relaxation to move the quadratic constraints € > eE ]) p(mj —m; — Ag) > —e into the
objective function. Each new term in the objective function is multiplied by a unique
Lagrange multiplier ); ;. In the view of the quadratic program solver the Lagrange
multipliers are constants, weighting the influence of the constraints moved into the

objective function. The multipliers are iteratively updated outside the QP solver.

Ai ik are adjusted after each time the simpler problem is solved. The adjustments

www.manharaa.com




13

are made using gradient ascent over the lambda values; therefore, we want to reward
constraints which have large lambda values. Since we are minimizing, we want the
large lambda values to be multiplied by a negative value so we make the terms in the

objective value be negative when the constraint is obeyed.

Constraint Lagrangian objective function term
€ > eijr - (my —m; — Ay) Ak (€ijg - (my —m; — Ay) —€)
—e <€ (my—mi — ) Nij - (=€ - (mj —mi — Ag) —€)

Unfortunately, this causes a problem because the two Lagrangian terms cancel each
other out to sum to a constant. Thus, we have to combine the two constraints into
one. This can be done simply by squaring the (m; —m; — Ay) term and subtracting
¢? (this did not seem to differ from using the absolute value function).

The downside is now we have a cubic function since we have the term ez(?’k - A7

We also want to encourage more peaks to be turned on. A trick in convex optimiza-
tion is to introduce a term into the objective function, M - r, where M, a constant,
is large and r, a variable, is between 0 and 1. To optimize the problem, r will want
to be lowered in order to shrink M - r. We use this to encourage more connectivity

by adding the constraint ), p; - ¢; + M - r > ~. This encourages more g; values to be

turned on in order to lower the objective function while holding the constraint. This
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leads to the following QP:

minimize
AL+ 3" N0 e ((my —mi — AR — ) + M -7 (2.4a)
3,9,k
subject to
> picgi+Meor>y (2.4D)
Vi, q; € {0,1} (2.4c)
Vi, gk, el), € {0, 1} (2.4d)
Vi, qz<z Z]k—l— (2.4e)
1,9,k
0< Ar < max(Ay) (2.4f)
0<r<1. (2.4g)

2.1.5 Minimizing over indicator variables

Minimizing over [|A||> will keep the alphabet small in size, but it will also select
Ay, values which are small in magnitude; this is something we do not want to favor.
In order to minimize the cardinality of the alphabet, and not the values in it, we can

minimize over some binary variables b, which are set to 1 if the corresponding Ay is

used in the alphabet. Thus (2.4al) becomes

Zbk+z>\7],k0 ef?k = b A =€)+ M7

1,7,k
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2.1.6 An edge-centric model: incentivizing larger graphs

i : ¢
In order to promote connectivity, which promotes more non-zero eg J) k

add the following term to the objective function: C/(3_, ;, eg}’k), for some constant

terms, we

C > 1. This term will dominate the objective function for large enough C' so the

priority for minimization will be to increase the denominator.

2.1.7 Battle of solvers: Mathematica versus CPLEX

Up until this point we were using Mathematica to solve the optimization problems.
Before Lagrangian relaxation Mathematica would hang on any problem with d > 16.
Once we switched to CPLEX the runtimes were dramatically better. CPLEX is made

by IBM and is a state-of-the-art convex optimization solver.

2.1.8 Removing quadratic constraints

Now using CPLEX, we are able to return to the pre-Lagrangian relaxation version
which was an LP with quadratic constraints. The quadratic constraint was
made of a binary variable multiplied by a continuous variable. In this case it is
possible to relax the QP to an LP [21].

Let b be a binary variable and z a continuous variable where L and U are the lower
and upper bounds for z, respectively. The term b-x can be relaxed by being replaced

with a new continuous variable, z, and adding the following constraints:

www.manaraa.com



16

We can implement this trick to replace the quadratic constraint (2.3d)) with con-
straints (2.5¢|) through (2.5h)) by substituting z; ; for eg?’k WAVS

2.1.9 Maximize number of edges and finding unique masses through

constraints

Here, we maximize over the edge indicator variables to try and improve the amount
of edges turned on. Constraint (2.71) is added which allows only one Ay to connect
the same peak pair so redundant alphabet masses do not help the objective function.

These two constraints combine to enable the LP to find all unique masses.

minimize
Z b — Z €£?k (2.5a)
ik irjk

subject to
Vi, gk, el), € {0,1} (2.5b)
Vi, gk, zijk <€ (2.5¢)
Vi, gk, 2 > —€ (2.5d)
Vi, j,k, zijk < el(?’k(mj —my;) (2.5e)
Vi, j,k, zijk > egf}’k(mj —m; — m]?X(Ak)) (2.5f)
Vi, gk, zige > (my —mi — Ag) — (my —mg) - (1—el)) (2.5g)
Vi, gk, zige < (mj —mi — Ayp) — (my; —m; — mkax(Ak)) (1- ez(,?,k)

(2.5h)
Vig, 1>y el (2.51)
k

Vi, gk, by > el (2.5))
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2.1.10 Two step method of finding the best As and then minimizing
the alphabet

Inspired by the Lagrangian mentality of solving many smaller problems, we mod-
ified our approach to only solve for one Ay at a time . This first pass
creates an alphabet which is not minimized in size but maximized in number of peaks
connected. The second pass is used to minimize the alphabet whose values are
now all constant but can be minimized in size by excluding some masses.

In the first pass, the b, indicator variables are now useless, so we modify by
removing the first term and constraint . After each iteration, k, all constraints
have the terms removed for pairs ¢, j such that € > m;—m;—A; > —eis satisfied. This
has the effect of having significantly fewer constraints and variables which decrease
even more over time.

Let I, and Jj, be the set of 7 and j values, respectively, such that e > |m; —m; —Ay|

for h € {0,..,k — 1} where k is the current iterations of the first pass. Then the LP
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being optimized in each iteration of the first pass is as follows:

minimize

- Z 65?’@ (2.6a)
4,J

subject to
Viel,je e, €{0,1} (2.6b)
Viel,jeJ, zijr<e€ (2.6¢)
Viel,jeJ, zr> —€ (2.6d)
Viel,jed, zir < ez(.?,k(mj —my;) (2.6e)
Vi€ lj e, zgn > e (my — mi —max(Ay)) (2.6£)
Viel,jed, zijr> (mj—m;—Ag) —(mj —m;) - (1— el(-?’k) (2.6g)

Viel,jed, zije < (mj—m; —Ag)—(mj —m; — mI?X(Ak)) (11— ez(?k)

(2.6h)

After (2.6) has been solved d times to find an alphabet, the following LP is solved
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to minimize the alphabet:

minimize
b=y > el (2.7a)
% irjk
subject to
Vi, gk, el), € {0,1} (2.7b)
Vi, .k, zijk <€ (2.7¢)
Vi, J k, zijr > —€ (2.7d)
Vi, gk, zijk < ez(.?’k(mj —my) (2.7¢)
Vi, j,k, Zijk > el(.?’k(mj —m; — m]?X(Ak)) (2.71)
Vi, gk, gk > (my —m; — Ag) — (m; —my) - (1 — ez(-i{k) (2.7g)
Vi, gy ky zigje < (mj —mi = Ay) = (m; —m; —max(Ag)) - (1~ ey
(2.7h)
Vi, gk, b > el (2.71)

2.1.11 Maximum vertex cover approach

A bipartite graph is a graph where the nodes can be separated into two classes such
that there are no edges between two nodes in the same class. Here, the two classes
are the collection of Ay values and the collection of edge indicator variables .
The goal of this model is to maximize the coverage of the edge indicator variables
class by selecting the best subset of the A class.

All values m; —m,; have been calculated in advance and each Aj has been assigned
to a unique (within €) m; —m; value. In this model, the alphabet values are limited to

be below 400Da; this is a way to limit the number of variables and improve the speed.
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Figure 2.1 Diagram of the bipartite relationship modeled in a linear pro-
gram (2.8). An edge connects a A value to an edge indicator

variable eS?yk if 32 € {1,2,3} s.t. [m; —m; — Ay/z| <e.

Now, Ay in the linear program is a binary variable indicating whether or not Ay will
be in the alphabet. Constraint limits the number of turned on A; values to d,
the size of the alphabet. This means that we do not minimize the alphabet, instead
it is set to a fixed size. An edge exists between A, and eE?yk in the bipartite graph if
Jz € {1,2,3} s.t. [m; —m; — Ag/z| < e. This is the first model to take charge, z, into
account. Edge indicator variables which do not have an edge in the bipartite graph

are removed (i.e. eﬁ?k does not exist if Vz € {1,2,3}, |m; —m; — Ag/z| > €). Thus,

()

there are many less e, ;, variables but many many more Ay, variables. This is now an
ILP where all variables are binary; this is sometimes called a binary linear program
or zero-one linear program.

Here, ¢; indicator variables are used again to indicate if peak i is touched by a mass
in the alphabet. Constraint forces ¢; to be turned on if any edge connecting
peak i is on. Ay indicator variables are forced on if any edge indicator variable which
uses Ay, is turned on through constraint . Ay, must be forced to turn on if any

edge indicator variables which connect peaks using A are turned on. This can be
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done by using the constraint » eg,?,k < Ag; however, this would limit the amount of
ijok

edges using Ay to one. A large constant, M, is used in constraint (2.8g)) to allow all

edge indicator variables which use Ay to be turned on and still satisfy the constraint

igk
In order to promote a connected graph, and not just a series of disconnected edges,

the a; variables are used along with and . Constraint says that if
any edge touching peak 7 is turned on, then at least one more edge must be turned
on or a; must be turned on. Then forces at most one a; to be on, meaning
all but one peak must have either zero or strictly more than one edge connecting
it. In this way, each peak must be connected to at least one other peak, forcing one

big connected graph. Multiple connected graphs may be allowed by increasing the
right-hand-side of (2.8¢]).
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minimize
_ Z eg? (2.8a)
2%
subject to
Vk, Ag €{0,1} (2.8b)
Vi, gk, el), € {0,1} (2.8¢)
Vi, a;,q; € {O, 1} (28(1)

» ai<1 (2.8¢)
Z A, <d (2.8f)

¢
Yoy < M- Ag (2.82)
7-],
Vi gkl aie+ Y (el el ) <2 (2.8h)
I,
VZ g Z Z]>z€ + e]>zz£) < M - qi- (281)

2.2 A max-flow/min-cut formulation

Here, we utilize graph-cuts in order to obtain an alphabet. A graph cut is a
separation of the nodes of the graph into two disjoint subsets. We form weighted,
directed graphs based on A, values, edges, peaks, and peak intensities. The Ay values

0

are not variables, but are a constant, calculated from m;"’ — mﬁf) for some 4, j, and /.

Redundant Ay values (ones within € of each other) are merged together. We include
a source node labeled “NOT USED”, and a sink node labeled “USED”. Graph cuts we

look at will always put the NOT USED and USED nodes into different sets which we
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label the “not used” and the “used,” respectively. We want to find the minimum cut,
which is the graph cut that minimizes the sum of the weights of the edges which go
from the not used nodes to the used nodes. The used nodes form the alphabet and
the minimization of the cut will be what optimizes the alphabet.

The max-flow min-cut theorem states that the maximum amount of flow passing
from the source to the sink is equal to the total weight of the edges in the min-cut
[22]. An efficient way to find the min-cut is to solve for the max-flow by formulating
the max-flow problem as an LP and solving via convex optimization. In contrast, the

max-cut problem is NP-hard [23].

0

If a model has both Ay nodes and edge nodes, e ;,

they are connected with a
weight of oo if |m§£) — mgé) — Ag| < e. The weight is infinite because including the

Ay in the alphabet necessarily forms the edge; so this can never be cut.
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Figure 2.2 Edge and peak centric graph-cut model used to find a min-

imum alphabet. All solid green edges between ¢; nodes have a

weight of 8. The dotted dark red line represents a graph cut

which would generate A = {Ag, A1} and the dashed dark green

line represents a graph cut which would generate A = {Ag}.

Large connected graphs are encouraged by the use of the

weighted edges.

An edge-and-peak centric model (2.2)) has nodes for the Ay values, the edges, and

the peaks. These peaks are connected to edge nodes with a weight of 8. The Ay values

are connected to the NOT USED node with a weight of o, which can be considered a

prior on including the Ay in the alphabet. Peaks are connected to each other with a

weight of 8 and connected to the USED node with a weight equal to their intensity.

This model discourages removing A, nodes by requiring the cut of multiple 6, 3, and

p; values. Connectivity is encouraged through the use of the [ weight; to disconnect
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peaks requires adding 5 to the cut.
Then each pair of edges which are adjacent to each other (i.e. eé?% and eg(g) are
connected with an edge weight of 8. For clarity, the  labels were left off of the figure

but all solid green edges have a weight of 3.

2.2.2 Edge centric model

—_ . |[NOT USED

\\:: ...................... .
~ ) o ....,..‘ *
Ao // A :
(0.0) // ‘ €
€, B\ €, é NG B ""e3 z
AN
N p =
Po o 1\i \p3p4 o

USED

Figure 2.3 Edge-centric graph-cut model used to find a minimum al-
phabet. The dotted dark red line represents a graph cut which
would create the alphabet A = {Ay, A1} and the dashed dark
green line represents a graph cut which would create the alpha-
bet A = {Ay}. Large connected graphs are encouraged by the

use of the  weighted edges.

A more edge centric model (2.3) does not include any nodes for the peaks. Instead
the edge nodes are connected to the USED node with a weight of the product of the

peak intensities connected by the edge. This greatly reduces the number of edges and

nodes in the graph compared to
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This model discourages removing A, nodes by forcing a cut through g values and
the peak intensity products connecting the edges to the USED node. Larger connected
graphs are encouraged through the use of the 8 edges which have to be cut if two A,

values create adjacent edges but only one is to be in the alphabet.

2.2.3 Edge centric model with extra connectedness incentive

NOT USED

€0,1€1,2 €3 4€3 5

B'po'pfpl'pz\\ /B-p3-p4-p3-p5

USED

Figure 2.4 Edge-centric graph-cut with extra connectedness incen-
tive model used to find a minimum alphabet. Model is similar
to with an extra layer of nodes between the edge nodes and
the USED node. This extra layer is to discourage cutting be-
tween two Ay nodes which form adjacent edges which connect

high intensity peaks.

Another edge-centric model ([2.7) was implemented to try and discourage breaking

apart Ay nodes which form adjacent edges of three high intensity peaks.
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2.2.4 Emphasizing A-to-A edge model

NOT USED

(0} (0 [0 a
€, €, €3, €35
00 (o0 00 00
AO Baoa A Baiaz A
P3P4
PoP1+P1P> P3Ps

USED

Figure 2.5 A dynamic A-to-A edge graph-cut model used to find a
minimum alphabet. In this model the edges connecting A node
to A node are not uniform but are based on how often edges

generated by the two A values touch each other.

A model with dynamic edges connecting Ay nodes is used to try and focus the
graph-cut around the Ay nodes since they are what creates the alphabet. The edges
now have a uniform prior, «;, and the A, nodes are connected to USED by the sum
of the products of each peak-pair it connects. The edge between the A; and A; is
weighted according to the amount of adjacent edges the two form. For each pair of
adjacent edges generated by the two nodes, the weight is increased by adding the
product of the intensities of the three peaks touched by the edges. This is meant to
encourage large connected graphs by making A;, A; pairs harder to cut if they form
many adjacent edge pairs. Using one of those A; in the alphabet means the other A;

is strongly incentivized to be included.
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2.2.5 Energy minimization model

NOT USED

0
(:!}<i A0,A1

Bao Ba

USED

Figure 2.6 Energy minimization inspired graph-cut model used to

find a minimum alphabet.

This model was inspired by an energy minimization simulation. The weight con-
necting the Ay node to NOT USED is considered the energy included in the system if
the Ay is used in the alphabet (because cutting it would mean using Ay). Similarly,
the weight connecting Ay to USED would be considered the energy required to not
use Ay in the alphabet.

The energy to use a Ay node is Z pipj, normalized by dividing by the largest such
energy for any Ag. The energy tolilf)t use Ay is calculated so the energy to use and
not use Ay is equal to one.

The edge between the A; and A; is weighted according to the amount of adjacent
edges the two form. For each pair of adjacent edges generated by the two nodes, the
weight is increased by adding the product of the intensities of the three peaks touched
by the edges. Then, after all A-A weights have been calculated they are all divided

by the average value. This is in order to normalize the values.
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2.2.6 Normalized graph-cut model

NOT USED

O
O+ prp

i,jee(ho)

0o
O+ pr;

i.jee(h)

z Pi
A i€e{e(Ao)ne(h))}
0)

zpipj

z PiP;

i,jee(A) ijee(h,)
O‘+Z Pip; O'+Z Pip;
i,jee(ho) i,jee(h;)

USED

Figure 2.7 A normalized graph-cut model used to find a minimum al-
phabet. The edge weight connecting a Ay node to NOT USED
is considered the prior. The other edges are also normalized and

used to discourage cutting Ay from the alphabet.

This model was an attempt to morph the energy minimization model into a nor-
malized probabilistic model. Each A, node is connected to NOT USED with a

weight of o/ (O’ + > pipj> € [0,1] and connected to USED with a weight of
)

Z,]EE(Ak

> pipi |/ lo+ > pipj | €[0,1]. Similarly, a pair A;, A; are connected
i,jee(Ak) i,jGe(Ak)
(by two edges of opposite direction) with a weight equal to the sum of the intensi-

ties of the peaks which are touched by both an edge generated by A; and an edge

generated by A;.
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2.3 Markov chain Monte Carlo

Each neutral loss alphabet A = § is the same constant, given size, d, and deter-
ministically produces a graph consisting of the edges F; these edges connect every
pair of peaks within one spectrum if the m/z difference between the peaks is within

e of the m/z difference created by dividing alphabet mass Ay by charge z:

© 1 m? —m? — S <
20,5,k
0 else.

The edges E can be found deterministically once A and D are known; for this

reason,

Pr(D|A =0) =Pr(D|A =6, FE =e) =Pr(D|E =e).

We assume that all spectra sV, s?) ... (and their masses and intensities) are condi-

tionally independent from one another given the graph induced by E:

Pr(D|A =0) = Pr(D|E =e¢)
= Pr(DW D® . |E=e¢)

= [[Pr(DY|E =¢)

¢
= H Pr(s®, m9 p|E = e).
¢

Conditional independence of the spectra given the edges is fairly reasonable, because
it resembles the fact that, given the sample content (which is informed through the
graph of connected peaks), the production of one fragmentation spectrum does not
interfere with the process by which other fragmentation spectra are produced. Even

the caveat, competition between abundant analytes in data-dependent acquisition
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(DDA), applies more to which precursors will be selected for fragmentation rather
than how peaks in those fragmentation spectra can be connected.

We seek, 0* a mazimum a posteriori (MAP) estimate of A:

0" = argmaxPr(A =§|D)
5

= argmaxHPr(D(£)|A =¢)-Pr(A =90)
oy

= argmaXHPr(s(Z),m(e),p(g)]A =0)-Pr(A =9).
5
¢

2.3.1 Non-combinatorial approach

The following is a non-combinatorial approach, meaning Ag, Ay, ... do not influence
each other and so can be solved for separately rather than as a joint d-dimensional

vector A. This non-combinatorial approach can be executed by empirically estimating

() ()

the distribution of m/z differences m;’—m; " over all spectra £. This can be performed

in an unweighted manner (all (7, j) pairs contribute equally to the distribution) or in
a weighted manner (an (, j) pair has contribution proportional to py) . p?)). Because
exactly overlapping differences are improbable, the non-combinatorial approach treats
two differences as equal if they are within € of one another. The process of finding all

g»g) — mge) can be done efficiently using the fast Fourier transform (FFT)

differences m
by binning the spectrum by m/z then convolving the spectra with itself.
The alphabet A, Ay, ... A, is estimated as the top d peaks in the empirical dis-

tribution after being sorted by either count in the unweighted case or the sum of

the proportional pg-g) . pZ@ values in the weighted case. It is important to note that
this non-combinatorial approach only cares about the number of occurrences of the
A values, does not take into account the connectivity of any graphs which are formed

by the edges induced by A.
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2.3.2 Combinatorial approach

The non-combinatorial approach does not incentivize building of large connected
graphs, such as long amino acid chains in a peptide, or large forking substructures
in glycoconjugate spectra [7]. A combinatorial approach can be used to incentivize

large connected graphs.

2.3.2.1 Efficient graph construction

For each spectrum D®, we efficiently build the graph of all possible connected

peaks. In each spectrum D and for each charge state z, we create an edge E,g@) s it

and only if

|m§€) —m” - 2 <.
z

This connects two peaks whose m/z difference is within € of the predicted m/z dif-
ference from alphabet mass Ay using charge z.
Of course, for any charge state z and some fixed spectrum ¢ consisting of n peaks,

edges can be trivially formed in ©(n - n - d); however, by sorting the m® values and

the A values, this can be sped up: By proposing the peaks mZ@ and my) first, we

(¢

know that we’re looking for an alphabet mass with % within € of mge) -m,; ); because

(]

the search for A, can be processed on the sorted array, this can be accomplished in

©(n - n -log(d)) steps. Likewise, if we first propose starting peak mgz) and alphabet

O

mass Ay, then we are searching for the ending peak m;’ with m/z value within e of

(0

m;’ + %; this can be accomplished in ©(n - d-log(n)) steps. This problem is closely
related to the famous 3SUM problem (here we have a generalization because it allows
matches within € instead of requiring exact matches as the classic 3SUM problem
does). Interestingly, there exists no known solution to the classic 3SUM problem in

O(n*2W) [24]. Furthermore, the “within €” criteria does not easily accomodate use
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of hashing (used to achieve one O(n?) algorithm) or other advanced approaches.
In practice, we accelerate the log, search for each spectrum by computing a dense
table of the cumulative counts of peaks with m/z at or below some target m/z value

. This table has bin widths of a:
A =4 mlY <t-a}l.

If & > €, we can then use this table to find bounds on indices with which we seed the

(0)

log, search: The lower bound index for matches will be found by c,,,_,. The upper

(0

bound index for matches will be found by ¢, ¢4

Using these bound values, we finish with two log, searches: one searches for the
first peak with m/z crossing = — €, and the other searches for the last peak with m/z
not crossing x + €. In practice, we observe a substantial speedup, even when the
number of peaks in the spectrum is relatively few (Table[2.2). This c¢\) table has the
effect of uniformizing the m/z search space; for some distributions of m/z values, this
can make the lookup run in constant time.

Furthermore, because the n peaks are stored in contiguous, sorted order (in an
array, not a balanced binary search tree), we can define all ending peaks j that would
be within e of starting peak i using alphabet mass Ay and record them with only two
integers: the beginning of the matching window and the size of the matching window.
This likewise introduces a considerable speed advantage over using a linked list of
peak indices (which would not be cache localized). By choosing a large enough «,
constructing a ¢\ table for fragmentation spectrum ¢ takes space roughly equivalent
to the sorted m/z array, m'¥, and the intensity array, p>.An a which is sufficiently
small will create a table which is too large to fit into cache, causing cache misses and

slowing the search (this happens for a = 0.0001 in table 2.2)). Too large of an « can
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create a large space for the two log searches, similarly slowing the search.

Alpha Naive search Log search Binned-log search

Average runtime(s) 0.0001 0.45861 0.08461 0.01541
0.005  0.45841 0.08472 0.00862
0.01 0.45902 0.08344 0.00780
0.02 0.45873 0.08342 0.00712
0.05 0.45826 0.08483 0.00738
0.1 0.45838 0.08464 0.00778
0.5 0.45919 0.08490 0.01304
1 0.45847 0.08479 0.01820

Table 2.2 Runtimes to find a peak in a spectrum within ¢ = 0.01Da
of the target m/z value, repeated for 2?° such searches on
a spectrum with 1,000 peaks. Note that for a < € the size of
the window returned by the search must be widened to find the
correct peak.

As a result of this, on a spectrum of the size in Table 2.2] we get an 11.7-fold

speed-up over a standard log search.

2.3.2.2 MAP estimation using sampling

In order to find the best alphabet we could simply try all alphabets. However, for
the larger of the two datasets we analyzed there are 58,051,970 possible peak pairs.
Then for an alphabet of size d there would be (58’05;’970) ~ 0(58,051,970%) possible
alphabets. For an alphabet of size 16 the number of possible alphabets is larger than
the number of particles in the universe and this dataset of size 1,891 is relatively small
for mass spectrometry where it is not uncommon to have millions of spectra.

Since it is not feasible to try all alphabets, we use a Markov chain Monte Carlo
(MCMC) method to approximate the distribution Pr(D, A = §’). Specifically, the
MCMC method we use is Gibbs sampling[25] because we want to propose one new

Ag|Ar, Ao, A1, Ak, ... Ay per iteration. For each univariate cross-section, the

changes to Ay are proposed and accepted via Metropolis-Hastings [26].
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Each Ay is proposed from one of three proposal functions (with the choice of

proposal function selected at uniform):

1. Select an m/z from the intensity-weighted distribution used for the non-combinatorial

approach (selected from all possible m/z differences, not just the top d).

2. Scale Ay to have an equivalent m/z value at some charge state. E.g., if Ay = 3,
it may propose 1 (from z =3 to z =1), 2 (from z =3 to z = 2), ...or 9 (from

z=1toz=3).

3. Select a random peak in some connected component for some charge state and
then chooses a new value for A, that would create a new edge incident to that

peak, thereby adding a new edge to the connected component.

The first and third proposal functions are topologically equivalent in that they
have the same solution space to pull A, from; however, the third solution is greedy
and guarantees that the value it selects will connect a peak to some already existing
connected component, the first proposal function does not make this guarantee.

The updated joint probability Pr(D, A = ¢’) is compared with the current joint
probability Pr(D, A = ¢). If Pr(D,A = ¢') > Pr(D, A = ¢), then the new Ay = ¢, is
accepted; otherwise the probability of accepting the new Ay = ¢, is

Pr(D,A =4
Pr(D,A=9§)"

A value proportional to the joint probabilities can be computed as the product

between a prior on A and a likelihood proportional to Pr(D|A).
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2.3.2.3 Likelihood model

Here we model the process by which E creates the peaks in spectrum ¢. We

partition E® into EEE) , Ey), ..., connected components for each charge state z:
Pr(DY|EY) = [[Pr(DV|ED).

We compute Pr(D(Z)]Eg)) as the likelihood of the graph using a particular charge
state z. Let g(Eg)) be a collection of the edges in each connected component of
the graph formed by EY. We define the likelihood of the graph formed when using
that particular charge state to be the sum of the likelihoods over these connected

components:

z

Pr(DYIED) = Y~ Pr(DY|G = ).

g€g(BL))
Lastly, we define the likelihood of a single connected component g using a single
charge state z on a single spectrum ¢ using the intensities of the peaks joined by each
edge:

Pr(DYG =g) = ] pi-ps

(i.5)€g

The values p; and p; have been normalized by dividing by the minimal intensity
value.

With a simple example one can see how this model motivates an alphabet that
seeks to form larger connected graphs instead of many smaller graphs which may
have more edges. Lets look at two scenarios, both with only z = 1 charge state. The
first is a graph with four peaks and four edges. The second is a set of two graphs
each with three peaks and two edges. Let all peaks in both examples have the same

intensity, p. Then the likelihood of the first scenario is (p-p)-(p-p)-(p-p)-(p-p) = p°.
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The second scenario will have likelihood (p-p)-(p-p)+ (p-p)- (p-p) = 2p*. For large

p, p° > 2p*.

2.3.2.4 Prior model

The prior model has three requirements, which together produce a prior of either
0 or 1: The first requirement is that all alphabet masses be > 1 — €. This restricts
alphabets to larger masses; being that smaller masses often have no chemical sig-
nificance, if we do not enforce this, small masses may be selected because they are
actually differences between actual alphabet masses. The second requirement is that
no two masses in the alphabet produce similar m/zvalues at any charge considered
(for example, A; = 1.00860, Ay = 2.01720 would not be possible in the same al-
phabet). This prevents doubling (or tripling, etc.) up on a single alphabet mass
strongly supported by the spectra. The third requirement is that no alphabet results
be within 0.5Da of one another (e.g., A; = 1,Ay = 1.1 would not be possible in the
same alphabet).

Ay 21

1 VE,Ar>1—¢ I Va2, x2— €1 —€,14¢
Pr(A) = : k2

0 else ki#k2 10 else

H 0 ’Akl — AkQ‘ < %
kizk: |1 else

For faster runtime, we encode the prior model using the random proposal distri-

bution. Given the current alphabet A, we propose an alphabet A’ that is identical

in all but one character A, which has been changed. We do this by first randomly

choosing k, the index that will be changed, and then proposing ), a new value for Ay.
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The new value is proposed by one of the three proposal functions described above.

When exactly one value in the current alphabet (A;) can produce an m/z value too
similar to the newly proposed mass (for some charge states z1, z3), we could simply
reject the proposal as having a zero prior probability; however, that approach can
lead to fixation in local optima of the likelihood surface, because it can be difficult to
exchange an alphabet mass with a multiple of itself that would produce an equivalent
m/z at a different charge state. Instead, it is more efficient to simply assign at index
k =t to overwrite A, if the proposal is accepted. When two or more values in the
current alphabet can produce an m/z too similar to the newly proposed mass (for
some charge states 21, 2z3), then the modification to the alphabet would lower the
prior probability to 0; therefore, the proposal is simply repeated without building the
graphs or computing the likelihood.

The prior probability is completely accounted for in the proposal step, and thus we

may substitute Pr(D|A) for Pr(D,A).

2.3.2.5 Adjusting likelihood steepness using 6

In traditional Metropolis-Hastings, a proposal from A to A’ will be accepted with

probability
Pr(D, A)
Pr(D,A)’

accepting the proposal certainly when Pr(D, A’) > Pr(D,A). We allow for this to be

distorted using hyperparameter 6, accepting the proposed change from A to A’ with

The motivation behind including @ is that the MCMC will not mix well if the surface is

probability

too steep, and will not find the optimum efficiently if the surface is not steep enough.
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In this manner, § = 0 results in always accepting proposed changes and 6 = oo
results in only accepting changes that immediately improve the joint probability. In
the experiments outlined here, we use 8 = 1, but offer the ability to set € to different
values at the command line.

Additionally, our software implementation outputs the acceptance rate of proposals
as well as the average deviation between log(Pr(D,A’)) and log(Pr(D,A)) to help
adjust 6. For example, if you want to set 6 to get roughly a 50% acceptance rate and

you know that the previous run gave an average deviation between log(Pr(D,A"))

and log(Pr(D,A)) of x, then e = <F1;i((%i/))> and you can solve (e%)? = 0.5 for 6.
The same objective could be accomplished using simulated annealing where a loose
f value turns hard according to some carefully selected cooling curve which allows for

the most probably outcome to be expected with probability of one if the simulation

is ran long enough [27].

Ranking masses in A

If desired by the user, using a flag at runtime, the frequency in which masses are
in the alphabet may be written to in a file. This may be used to create a ranking of
the A values based on how many iterations of the Gibbs sampler they stayed in the

alphabet. This is done for all masses, not just the masses in the final alphabet.

2.3.2.6 Mapping A m/z values to canonical masses

Inferring masses from mass-to-charge gaps is difficult, because two masses may
look identical at different charge states. For this reason, the combinatorial approach
sometimes finds integer multiples or fractions of a mass instead of the mass itself.
For example, water has a mass of roughly 18.01057Da; however, the combinatorial

approach may find some A, = 36.02114 = 2 - 18.01057. Generally, if multiple charge
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states of neutral water losses are well represented, we would expect using Ay =
18.01057 will produce a superior likelihood compared to using A, = 36.02114, and
therefore the combinatorial approach would eventually choose the canonical mass;
however, there are cases where using Ay, = 36.02114 may produce a higher likelihood.
For example, if three peaks indicate a double neutral loss of water peaks a, b, ¢ at xTh,
(x 4+ 18.01057)Th, and (x + 36.02114)Th), then Ay = 36.02114 can connect a — ¢
using a charge state of z = 1 and also connect a — b and b — ¢ using a charge state
of z = 2. If the z = 3 charge state is not well represented (using Ay = 36.02114 will
not find gaps of size 9.0075Th produced by water at a charge state of z = 3), then

the model will prefer A, = 36.02114 to A, = 18.01057.
For this reason, before we report the final mass alphabet A, for each A, € A, we
Ar Ar A Ak

compare the masses =k

Sk, 5E, 55, ., 58 where c is the value of the max charge used in

the Gibbs sampler. For each of the new candidate masses, A}, the graphs produced

over all spectra for its charge states B A A " ZA—:;“C are built. If % and its charge

Z=17 2=27 z2=37 "
states produce the most edges, we report the mass as Ay (unchanged); if % and its
charge states produce the most edges, we report the mass as %. In this manner,
double neutral losses, double mass differences, and dimers do not force us to report

multiples or fractions of the mass of interest.

2.3.3 Finding recurring structures via similar subgraphs

Given the A collection estimated by the Gibbs sampler, we are able to use the de
novo approach to connect as many peaks as possible in each spectrum at every charge
state of interest. On each spectrum and for each charge state, we record all connected
components.

From this collection of graphs, we would like to find large connected components

that are isomorphic to one another (i.e., one graph is the same as the other, but with
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renamed vertices); however, graph isomorphism is a difficult problem: although it is
not known if it is NP-complete, it is thought to be recalcitrant enough to be employed
in cryptography [28].

For this reason, finding large, recurring structures in the de novo graphs appears
difficult. This is made more difficult if we generalize to the optimization variant in
which we find the largest isomorphic subgraphs of each graph, rather than scoring

each as “isomorphic” or “not isomorphic”.

2.3.3.1 Finding graph isomorphism with cross-correlation of sub-

spectra

Fortunately, the graphs that we are using have a metric property in which distances
are preserved. For instance, if a graph connects peaks at 2Th, 6Th, and 9Th, then
any isomorphic graph must connect peaks of the form #Th, (x+4)Th, and (z+7)Th
(e.g., 90Th, 94Th, and 97Th). For this reason, we can use cross-correlation of the
subspectra (i.e., the peaks that correspond to nodes in our graph) to discover the
largest isomorphic subgraph. The cross-correlation shifts the two subspectra over one
another and computes the dot product at each shift. The shift that produces the
maximum dot product solves for x, and the peaks that align at that shift indicate
corresponding nodes in the two subgraphs.

Using this approach, we can efficiently score pairs of connected components for

similarity.

2.3.3.2 A locality-sensitive hashing approach to clustering subgraphs

We could use this cross-correlation approach to find the largest isomorphic sub-
graphs on all pairs of connected components found in all spectra; however, the run-

time of this would be quadratic in the total number of connected components found
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(and this would be far more than quadratic in the number of spectra); this is not
efficient enough to be applied to many spectra.

For this reason, we generalize locality-sensitive hashing (LSH) to find subspectra
that have a high maximum value in the cross-correlation (the maximum value of
the cross-correlation is the measure of subgraph isomorphism described immediately
above).

LSH encodes objects (i.e., subspectra) as large vectors by binning them by m/z.
The probability that a random plane cuts between two such vectors is 1 — %, where
is the angle between the two vectors [29, [30]; therefore, by applying a random plane
to an object, we get 1 bit of information for that object (e.g., a 0 is encoded by being
on the negative side of the vector normal to the plane, a 1 is encoded by being on
the positive side of the vector normal to the plane). We can apply this procedure b
times, thereby producing a b-length bit-string label for each object, and thus binning
each object into one of 2° bins. If several planes are applied, there is only a small
probability that two dissimilar objects would reach the same bin. This has recently
been applied to clustering mass spectra [31].

This standard LSH approach to clustering mass spectra cannot be applied in our
case because we do not know the shift between a pair of subspectra that would allow
them to align and produce a high dot product; LSH does not work in this case.

We introduce a means by which we can cluster spectra that allows spectra to be
placed into a similar bin even when they are shifted. Given a vector a (from binning

a spectrum) and a vector b (from binning a second spectrum) where both have length
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n, we note the value of index k for each discrete Fourier transform (DFT):
n—1
. 27
i=0

n—1
gk 2E
Bk = E bi-e ks 1.
=0

We note a = b, i.e., a is equivalent to b up to rotation, if Ju : a;iy) mod n» = bi-

Thus we have

n—1

o —ik-2T /=1
B, = § Q(i+u) mod n " € "
=0
n—1
—(i—u)-k-27 /=
— E ai.e(z u)-k- =2/ 1’
=0

because we can equivalently shift the a; terms forward or the e~H2V=T terms back-

ward by u. Thus

n—1
o —ik2m/ 1 wk2m—1
By = § Q(it+u) mod n " € " e
1=0
2w

i.e., rotating a sequence will simply change the phases of each index of the DFT.

If we ignore the phase of each term in the DFT (using the magnitudes |Ax| and | By|
at each index, known in signal processing as the “power spectra”), then two objects
that are identical up to rotation must look identical.

Thus, we use fast Fourier transform (FFT) [32] to create the power spectrum of each
subspectrum derived from a connected component, and then use LSH to bin similar
power spectra. Bins that contain subspectra coming from many large connected

graphs are indicative of de novo results that are likely reproduced in multiple spectra
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and multiple charge states. These recurring subgraphs give insight into common
chemical structures found with the inferred alphabet A (Figure [2.8).

Importantly, the cost of running the above procedure (ignoring the cost of perform-
ing the FFT for each subspectrum corresponding to a connected component) will be
linear in the number of connected components investigated, an improvement from

quadratically many computationally difficult graph isomorphism problems.

2.4 Edge-maximal isomorphic subgraphs on embeddings in Z¢

Let G = (V, E)) be a Euclidean graph (or, alternatively, a weighted Euclidean graph)
embedded into Z?. Excluding the degenerate case where vertices have 0 distance to
one another, each vertex must correspond to a unique location in Z? such that the
distance between any pair of vertices in the graph (using number of edges if G is
unweighted and weighted distance if G is weighted) is preserved by the distances of
the vertex locations in the embedding. Let this embedding take the form of a function
f from nodes to Z¢.

Give an f to perform the embedding, the edges of the graph can be encoded as a

tensor T(GQ) € Z* x Z% = Z*¢ as an adjacency tensor:

1, (a,b)e E
T(G)fa),r) =
0, else.

We say that two embeddings, T(G;) and T'(Gs), are “oriented” with respect to
one another if the axes and directions of the embeddings are aligned. Thus, any
isomorphic subgraphs g1 = (v1,e1),92 = (v2,e3) of Gy, Gs (respectively) will have
vertices shifted from one another. Thus any oriented isomorphic subgraph will have

Js =< 7% such that all matched nodes in the isomorphism align in space: Vo &
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Figure 2.8 An LSH approach to finding similar subgraphs. In the left

column, three spectra are shown with the subspectra (shown in
color), which are peaks contained in a connected component pro-
duced by building the graph with the estimated mass alphabet
A. The second column shows only those peaks in the subspec-
trum. The third column shows the absolute values of the DFTs
of the subspectra. Each of these power spectra is dot producted
with a random hyperplane, and the sign of the resulting value is
used to produce a single bit. When two connected components
have large subgraphs isomorphic to one another, their subspec-
tra must be shifted versions of each other, and thus their power
spectra must be nearly identical. Two subspectra drawn (first
and second rows) are similar in this manner, producing similar
power spectra and thus a low probability of being separated by a
random hyperplane. Repeating this process with several differ-
ent random hyperplanes and concatenating the bits produces a
hash, which has a high probability of binning together connected
components that have substantial subgraph isomorphism.
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v1,Vy € v9, € Z 1 y = x + (s,5). Note that the edge embeddings are € Z*¢ and so
we shift by (s,s) because both start and end vertices must be shifted identically to
preserve the graphs.

Given these oriented embeddings, the edge-maximal isomorphic subgraph can be
found via the cross-correlation between T(G1) and T(Gs). Let C = T(G1) ® T(G3)

denote the cross-correlation between T'(G; and T(Gy). For any shift s € Z9,

Cowy = >, T(G)w T(Ga),

w,yw+(s,8)=y

= ZT(Gl)w : T(GQ)TU‘F(&S)'

Thus Ci, s is a dot product of the shifted adjacency tensor T'(G;) on the adjacency
tensor T'(G2). Because the tensors have 1 where edges exist and 0 where edges do not
exist, each shifted dot product counts the number of edges bijective to one another
when T'(Gy) is shifted by s relative to T'(G3).

By the definition of orientedness, each considered isomorphic subgraph must have
some s whereby T'(G1) has been shifted by s to align the vertex locations with their
corresponding vertices in T(Gs). Thus the edge-maximal isomorphic subgraphs must
be found at some shift s*, at which Cs« o« will be maximal. Conversely, the entry s* at
which Cy is maximized corresponds to the shift with which the isomorphic subgraph
with the largest number of edges is found.

Thus the shift producing the node bijection with greatest number of matching edges
can be found by computing C by performing FFT convolution in Z2?? and searching
C' for the index of form (s*,s*), at which it attains maximal value. Likewise, given
this shift, the matching nodes can be found by locating the nonzero entries in the dot

product between the tensors.
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2.4.1 Exploiting sparsity

Storing edge embeddings in Z?? can requires substantial space and performing
convolution in Z2?? can require substantial time. We can simultaneously exploit a
sparsity in both the edge embeddings and in the cross-correlation, in which we only
visit indices of the form (s, s) where s € Z¢.

We perform this by first transforming the tensor embeddings from starting vertex
and ending vertex pairs into bijective (and orientation-preserving) embeddings on

vertex differential and starting vertex pairs. That is,

/ 1, (a,b)€e E
T(G) s0)-f(a).f(a) =
0, else.
cl = > T(G)wa - T(G2) .2

(w,z),(y,2):(wts,2+5)=(y,2)

- Z T(Gl)(w@) ’ T(G2)(w+s,x+s)

(w,z)

= Z TI(GI)(x—w,w) . T/(GQ)(x—’w,’w-i-S)

(w,z)

= ) T'(G1)a®T'(Ga)a.

That is, we count the bijective edges at shift s € Z¢ by counting the edges (via dot
product) that have the same differential and the same start location after applying
the shift. This can be performed by summing several cross-correlations. These cross-
correlations are on tensors € Z¢; furthermore, the edge embeddings themselves can
now be stored in a sparse manner by using a dictionary of edge differentials to vertex

start locations. Storage will thus be reduced to Z? when the graphs are sparse, but
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without preventing the benefit of FFT tensor convolution, which can only be applied
on arrays.

Thus, when considering a pair of tensor embeddings 7"(G;) and T7(G2), we can
find the isomorphism with the largest number of matching edges by finding the s* at

which C!. is maximal.

2.4.2 A shift-invariant LSH encoding

When considering n graphs, we can use the FFT-convolution-based approach above
to find pairs of graphs with large edge-maximal isomorphic subgraphs by simply trying
all (;) graph pairs; however, when n is large, the number of pairs will become too
large to efficiently use this approach.

In order to reduce the number of pairwise matchings we use LSH to first bin the
graphs and only compare all pairs in the same bin. LSH relies on each graph being
represented as a vector in R™ such that graphs with a large number of isomorphic
edges must be close to one another. LSH exploits the fact that any two points in R™
will share a plane with the origin, and thus the normalized points can be thought
of as separated by an angle ¢ on the unit sphere (sampled by sampling from several

independent Gaussians and normalizing so that || - ||o = 1). The probability that a
Y

random vector on the unit sphere will have dot products with different sign is 1 — =,
because the dot product will ignore any axes not in the plane with the origin|29] [30].
Thus, several such random vectors on the sphere can be generated to form a hash for
each object: a negative dot product with the random vector will append a 0 bit to
the object’s hash and a nonnegative dot product will append a 1 bit to the object’s
hash. Thus, k£ random vectors will produce k-bit hashes for each object in O(n-k-m)
time (which will be faster than n? when the number of graphs n > k- m). Objects

with a small angle between them have a much higher probability of hashing into the
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same bin. Thus, by performing a few replicates of this strategy, the probability that
near neighbors do not reach the same bin in at least one replicate becomes small;
meanwhile, the expected number of objects that land in the same bin remains small,
and thus few pairs must be compared.

The adjacency tensors themselves are not suitable for direct hashing because shifted
graphs will have a large angle between them using the Z?¢ representation; however,
the fact that each graph pair can be compared using convolution indicates that they
will have significant overlap in the frequency domain.

Given two vectors a and b, we write their frequency domain representations as

follows:
n—1
. 27
Av = Zai'e_l'kTm
i=0

n—1
ik 2T/
Bk = E bi-e ik n 1.
=0

We note a = b, i.e., a is equivalent to b up to rotation, if Ju : a;y) mod n = bi-

Thus we have

n—1
o —ik-2T /=1
By = Q(i+u) mod n " € "
=0
n—1
—(i—u)-k-27 /=
= a;- e (i—u)-k n 1’
=0

because we can equivalently shift the a; terms forward or the e~ R 3 V=T terms back-

ward by u. Thus

n—1
o —ik2m/ 1wk 2m—1
By = E Q(it+u) mod n * € " e "
1=0
27
Ak . eu'k'T‘/jl,

www.manharaa.com




50

i.e., rotating a sequence will simply change the phases of each index of the DFT.

If we ignore the phase of each term in the DFT (using the magnitudes |Ay| and | By|
at each index, known in signal processing as the “power spectra”), then two objects
that are identical up to rotation must look identical.

Thus, we use fast Fourier transform (FFT)[32] to create the power spectrum of
each adjacency tensor derived from a connected component, and then use LSH to
bin similar power spectra. Importantly, the cost of running the above procedure
(ignoring the cost of performing the FFT for each graph in the set) will likely be
€ o(n?) in the number of graphs investigated, an improvement from quadratically
many computationally difficult graph isomorphism problems.

By observing where the FFT would be employed in the cross-correlation between
the T” tensor embeddings, we transform the embedding for graph i into the frequency

domain via the d-dimensional FFT and then converting to a power spectrum:

F(G)a = |[FFT(T'(G).)].

We perform LSH for this graph by sampling several random Gaussians g, N(0,1):

Lo 2020 9ar - [FFT(T'(Gi)a)le 2 0

bit _hash(G;) =

0, else.

A k-bit hash for each graph is completed by concatenating k bit hashes. Note that
the Gaussians should be sampled once for each all objects to receive a single bit hash

and resampled for each subsequent bit concatenated by the LSH.
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CHAPTER 3 RESULTS

3.1 Data

All results were obtained from running the models on the following two datasets.

3.1.1 Manually curated glycoconjugate spectra from human urine

Thousands of glycoconjugate spectra from human urine were manually curated by
an expert to find 62 with strong evidence of glycoconjugates [7]. A priori, four sugar
residue masses (Hexose, HexNAc, dHex, and NeuAc), as well as the neutron mass
(whose mass is roughly the shift to produce isotope peaks) are the only masses we
expect. Note that these masses were not provided for analysis, but are only used to

validate the resulting masses found.

3.1.2 Horseradish peroxidase glycoprotein standard spectra

Glycoprotein stain (Pierce Glycoprotein Staining Kit, catalog number 24562) con-
taining horseradish peroxidase (UNIPROT accession P00433[33]) was analyzed on

an ABSciex Triple TOF 5600+, producing 1,891 fragmentation spectra (similarly to

[34]).

www.manharaa.com




52

3.2 Convex optimization

All results from this section were obtained by running the models only on the

glycoconjugate data.

3.2.1 Minimal quadratically constrained linear program (M2.1.3)

n d Correct Incorrect Unique Time(s)
10 3 3 0 3 10.011
10 5 3 0 3 17.342
13 5 4 0 4 31.548
12 16 0 16 0 95.159
15 16 0 16 0 172.383

Table 3.1 Runtimes and outcome from M2.1.3| when using Mathematica. n
is the number of peaks in the spectrum and d is the maximum size
of alphabet allowed. Correct is the number of alphabet masses
which fit between two peaks within e —0.1. Unique is the amount
of the correct answers which were unique masses.

3.2.2 Lagrangian relaxation (M2.1.4)

n d Iterations Step-size Correct Incorrect Unique Edges Time(s)

5 10 10 0.1 ) 2 4 9 48.148
10 10 10 0.1 9 0 6 101 324.671
30 16 10 0.1 - - - - 835.197

Table 3.2 Runtimes and outcome from M2.1.4l n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within e —0.1. Unique is the amount of the correct answers
which were unique masses.
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3.2.3 Minimizing over indicator variables (M2.1.5)

1Al 220
25.12  20.02
18.65 17.95
20.22 16.78

Table 3.3 Alphabets when ran with ||Ally in the objective function versus
> bi in the objective function. There were 10 peaks with an

k
alphabet of size 3.

n d Iterations Step-size Correct Incorrect Unique Edges Time(s)

4 5 10 0.1 2 2 2 2 29.954
10 5 10 0.1 0 5 - - 99.384
10 10 10 0.1 1 9 1 2 291.228
15 15 0 0.1 0 0 0 0 error

Table 3.4 Runtimes and outcome from M2.1.5l n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within e —0.1. Unique is the amount of the correct answers
which were unique masses.

3.2.4 An edge-centric model: incentivizing larger graphs (M2.1.6)

n d Iterations Step-size Correct Incorrect Unique Edges Time(s)

5 10 10 0.1 1 1 1 3 50.456
10 10 10 0.1 6 0 6 7 321.131
15 10 0 0.1 0 0 0 0 error

Table 3.5 Runtimes and outcome from M2.1.6] n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within e —0.1. Unique is the amount of the correct answers
which were unique masses.
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3.2.5 Maximize number of edges and finding unique masses through

constraints (M?2.1.9))

n d Correct Incorrect Unique Edges Time(s)

10 5 5 0 5 5 0.17

15 5 5 0 5 7 0.46

20 5 5 0 5 13 11.23

30 5 5 0 5 25 stopped at 11.16
10 10 10 0 10 10 59.01

Table 3.6 Runtimes and outcome from M2.1.9] n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within e —0.1. Unique is the amount of the correct answers
which were unique masses.

3.2.6 Two step method of finding the best As and then minimizing the

alphabet (M32.1.10)

n d Correct Incorrect Unique FEdges Time(s)
10 5 5 0 5 7 0.14
20 5 5 0 5 20 0.329
20 5 5 0 ) 65 11.393
100 5 5 0 ) 70 180.10

Table 3.7 Runtimes and outcome from n is the number of peaks
in the spectrum and d is the maximum size of alphabet allowed.
Correct is the number of alphabet masses which fit between two
peaks within e —0.1. Unique is the amount of the correct answers
which were unique masses.
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3.2.7 Maximum vertex cover approach (M3.2.7))

Mass value
0.91967
1.90000
2.91732
3.87359
23.8847

35.91240
71.98874
83.86975

Table 3.8 Output alphabet of size 8 using the bipartite graph model
(M3.2.7). The program took 27.08 minutes to run on all un-
filtered spectra from the glycoconjugate dataset.

3.3 A max-flow/min-cut formulation

For all graph cut models we were unable to get any useful results. They would
all almost always choose an alphabet of either zero masses or all masses available.
The energy minimization model and the normalized model would sometimes choose
an alphabet in between but that would still be all but just a handful of delta values,

resulting in an alphabet of several hundred masses.

3.4 Markov chain Monte Carlo

The values in the results are reported using five decimal places, despite having
machine tolerances of 0.02Da and 0.05Da. The reason for this is that we often find
masses to a much higher precision. This is because if we have a set of masses which
are within machine tolerance of the monoisotopic mass of water and connect at least

one pair of peaks in a spectrum, then the distribution of the masses in the set should
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Rank | A Frequency label
1| 42.01047 16000
2 | 84.02204 16000
3 | 188.01611 16000
4 | 130.00746 15997
5| 0.98410 15953 Neutron/Deamidation
6 | 18.00746 15952 Water
7| 162.04746 15905 Hexose
8 1 94.03555 15894

Table 3.9 Results from ranking masses in A for 62 glycoconjugate
spectra. This table shows the rankings of the masses by fre-
quency of presence in A. The higher the frequency, the more
times this mass (or a mass within € of it) was included in the
alphabet. This was run with € = 0.02Da and d = 8.

center around the true monoisotopic mass of water. For example, in the alphabet
for the 62 expert-curated spectra which uses € = 0.02Da we find water at a mass of
18.01068Da which is 0.000115Da from the monoisotopic mass of water and we find a
mass of 30.01058Da which is accurate to the value of a serine/glycine substitution,

30.010565Da, for four digits [35].

Ranking masses in A

Tables and show the rankings of masses in alphabets for the 62 glycoconju-
gate spectra and 1,891 glycoprotein spectra, respectively. In both instances the Gibbs
sampler was ran for 16,000 iterations. Taking into account the alphabet sizes for the
two tables (8 and 16, respectively) you can see which masses were highly desirable.
With some masses were in almost every iteration they must have been proposed early,
this shows why having a great proposal function is crucial. These rankins are saved

to file before the mapping to canonical mass step.
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Rank | A Frequency label

1 | 162.05000 16000 Hexose
2| 228.07500 15997 2x N
3 | 0.98210 15996 Neutron/Deamidation
4 | 18.01130 15986 Water
5 | 42.00810 15909
6 | 30.02500 15899
7 | 180.06330 15756
8 | 57.00000 15721 G
9 | 23.00420 15692

10 | 144.06510 15650

11 | 790.37500 15648

12 | 202.10000 15590

13 | 17.01790 15569

14 | 720.25740 13857

15 | 2.07260 9725

16 | 839.37500 8935

Table 3.10 Results from ranking masses in A for 1,891 glycopro-
tein spectra. This table shows the rankings of the masses by
frequency of presence in A. The higher the frequency, the more
times this mass (or a mass within € of it) was included in the

alphabet. This was run with ¢ = 0.05Da and d = 16.

Efficiency of LSH when hashing pairs of similar and dissimilar graphs

Now, we look at how effective this LSH method is at putting a pair of similar, but

shifted, graphs into the same bin versus a pair of very different graphs (figure [3.1).

De novo sequencing was performed on spectra taken from the 1,891 glycoprotein data

set with the alphabet from table|3.14] The graphs are bijective to the subspectra and

are created by isolating the peaks connected by the alphabet. Each node in a graph

represents a peak in a spectrum, with an edge connecting two nodes in the graph

if the peaks in the spectrum are connected by a mass in the alphabet. Graphs 1

and 2 are very similar, but not exactly the same, and are shifted by roughly 300Da.

Graph 3 is almost completely different from the first two. For hashes with different

number of bits (i.e. different number of cutting planes) all pairs were binned together
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at a different rate with the pair of similar graphs always being binned together at a

significantly higher rate than any pair involving the dissimilar graph.
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Figure 3.1 Effectiveness of LSH on binning together pairs of sim-
ilar, but shifted, graphs and pairs of dissimilar graphs.
Three subspectra were created by applying de novo sequencing
on the 1,891 glycoprotein spectra with the alphabet from table
Graphs 1 and 2 are very similar subspectra (44 out of 55
similar peaks) but are shifted by roughly 300Da. Graph 3 is
a very different subspectra from graphs 1 and 2. In subfigure
the percentage of times each pair of graphs are binned
together is plotted versus the number of bits in each hash. In
the subspectra, the different colored peaks represent being con-
nected by Ag/c values of different charge.

Below we look at the results from two datasets; both used 32 threads. The manually

curated glycoconjugate dataset has 62 spectra and was run with € = 0.02Da. The
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horseradish peroxidase glycoprotein has 1,891 spectra and was run with ¢ = 0.05Da.
Both datasets are available at the site listed in the “available” section. The e values
are machine-dependent and were recommended by the scientists who produced the
data (Dr. Froehlich for the glycoconjugate dataset and Dr. Shu and Dr. Yang for
glycoprotein dataset). In each fragmentation spectrum, we remove peaks that are

below 1% of the maximum intensity in that spectrum.

3.4.1 Manually curated glycoconjugate spectra from human urine

Thousands of glycoconjugate spectra from human urine were manually curated by
an expert to find 62 with strong evidence of glycoconjugates [7]. A priori, four sugar
residue masses (Hexose, HexNAc, dHex, and NeuAc), as well as the neutron mass
(whose mass is roughly the shift to produce isotope peaks) are the only masses we
expect. Note that these masses were not provided for analysis, but are only used
to validate the resulting masses found. A more detailed explanation of the sample
preparation is available in [7].

Non-combinatorial results are shown with d = 8 for both the unweighted and
weighted approaches (Table [3.11)).

The combinatorial approach was run for 16 epochs per thread. Each epoch used
1000 iterations. The total real runtime of the analysis was 4 minutes. Combinatorial
approach alphabet results are shown with d = 8 (Table .

Examples of recurring structures found using LSH with the d = 8 alphabet projec-

tion (i.e., the alphabet reported in Table [8.12) are shown in Figure [3.2]
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Rank Mass  Molecule Rank Mass  Molecule
1 0.99686  Neutron/Deamidation 1 0.99686  Neutron/Deamidation
2 18.00686  Water 2 18.00686  Water
3 0.49686 3 0.49686
4 60.01686 4 | 162.04686 Hexose
5 42.00686 5 60.01686
6 | 162.04686 Hexose 6 88.00686
7 27.98686 7 36.01686
8 36.01686 8 30.00686
16 17.01686  Ammonia 17 17.01686  Ammonia
110 | 203.07686 HexNAc 136 | 203.08686 HexNAc
923 | 146.06686 dHex 832 | 146.06686 dHex
1,765 | 291.09686 NeuAc 1,522 | 291.09686 NeuAc

Table 3.11 Most frequent d = 8 gap pairs (i.e., m; —m;) on 62 expert-cu-
rated glycoconjugate spectra. The left table ranks using the
unweighted frequency of gaps and the right table weights each
gap by the product of peak intensities p;-p;. Masses are rounded
to 5 decimal points.

Mass value

Manual interpretation

Known a priori?

Monoisotopic mass

1.00328
17.00746
18.01068
30.01058
42.01071
88.01555

162.04746
203.06746

Table 3.12

Neutron
Ammonia
‘Water

Hexose
HexNAc

Yes
No
No

Yes
Yes

1.00860
17.02655
18.01057

162.05282
203.07943

Results when running the combinatorial approach on 62 ex-

pert-curated glycoconjugate spectra with d = 8. Because the
combinatorial approach assigns no ranks to the masses, they are
reported in ascending order. Masses are rounded to 5 decimal
points. Masses known a priori are labeled; these masses were
not provided to the model, but instead are known true positives
in advance.
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Figure 3.2 Example similar subgraph pair found using LSH on
results from 62 expert-curated glycoconjugate spec-
tra. Two spectra (a,c) and their corresponding de novo graphs
(b,d) found using the combinatorial approach. Spectra are
drawn with peaks used in the graph colored red and un-
used peaks colored green. LSH is used to find this match-
ing pair, and fast convolution finds the largest isomorphic sub-
graph in the pair (e). A minimal amount of peaks were re-
moved from (b,d) for legibility. The top subspectrum is from
“120810 JF HNU142 16.5710.5710.3” and the bottom is from
“120810 _JF HNU142 16.6444.6444.4.
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Figure 3.3 Example similar subgraph pair found using LSH on re-
sults from 1,891 glycoprotein standard spectra. Two spec-
tra (a,c) and their corresponding de novo graphs (b,d) found us-
ing the combinatorial approach. Spectra are drawn with peaks
used in the graph colored red and unused peaks colored green.
LSH is used to find this matching pair, and fast convolution finds
the largest isomorphic subgraph in the pair (e). Some peaks were
removed from (b,d) for legibility. The top subspectrum is from
“Locus:1.1.1.2518.2” and the bottom is from “Locus:1.1.1.8343.2”
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3.4.2 Horseradish peroxidase glycoprotein standard spectra

Glycoprotein stain (Pierce Glycoprotein Staining Kit, catalog number 24562) con-
taining horseradish peroxidase (UNIPROT accession P00433[33]) was analyzed on
an ABSciex Triple TOF 5600+, producing 1,891 fragmentation spectra (similarly to
[51).

The data were provided and processed blind without knowledge of its sample ori-
gins, only that sugars were present; like the 62 curated spectra, these sugars were not
used in the analysis, only in the validation of the results. Thus, like the first data
set, the only a priori expected masses are of four common sugar residues (Hexose,
HexNAc, dHex, and NeuAc), as well as the neutron mass. It is important to note
that the presence of amino acids was not expected.

Non-combinatorial results are shown with d = 16 for both the unweighted and
weighted (Table approaches.

The amino acids found with the d = 16 alphabet projection (i.e., the alphabet
reported in Table are G, T,I/L,N, and K/Q (K and Q are listed together
because the machine’s € is too large to differentiate between the two for the mass
found). These amino acids can form a chain, LNGNL, which are the 241" through
245" amino acids in the peptide sequence. This includes the glycosylation site at the
244" amino acid (the second asparagine in LNGNL ) in the sequence [33]. The amino
acid chain TLNTT can also be produced from the alphabet. This chain covers the
226" through the 230"* amino acids in the peptide sequence which includes another
glycosylation site occurs at the 228" amino acid in the peptide sequence.

The weighted non-combinatorial approach, which found more amino acids than
the unweighted non-combinatorial approach, was only able to find I/L, T, and A.

Because of the lack of asparagine found by either non-combinatorial approach, neither
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one is able to build an amino acid chain which covers any of the glycosylation sites

for this peptide.

Examples of recurring structures found using LSH with the d = 16 are shown in

Figure 3.3

Examples of two subspectra, from two different spectra, and their connected de

novo graphs, which include the amino acid chain LNGNL, are shown in Figure [3.4]

Rank Mass  Molecule

1 18.00000  Water
2 0.02500
3 0.97500  Neutron/Deamidation
4 | 113.07500 I/L
5 | 203.07500 HexNAc
6 17.02500 Ammonia
7 17.00000 Ammonia
8 1.00000  Neutron/Deamidation
9 0.05000

10 | 101.02500 T

11 0.00000

12 18.02500 Water

13 17.97500  Water

14 27.97499

15 | 113.05000 I/L

16 | 203.05000 HexNAc

18 | 162.05000 Hexose

54 | 146.05000 dHex

914 | 291.12500 NeuAc

Rank Mass  Molecule
1 18.00000  Water
2 0.02500
3 | 203.07500 HexNac
4 | 113.07500 I/L
5 0.97500  Neutron/Deamidation
6 17.02500 Ammonia
7 0.00000
8 17.00000 Ammonia
9 0.05000
10 | 162.05000 Hexose
11 101.02500 T
12 35.99999
13 1.00000  Neutron/Deamidation
14 | 203.05000 HexNac
15 41.02499
16 17.97500  Water
53 | 146.05000 dHex
1,112 | 291.10500 NeuAc

Table 3.13 Most frequent d = 16 gap pairs (i.e., m;—m;) on 1,891 glycopro-
tein standard spectra. The left table ranks using the unweighted
frequency of gaps and the right table weights each gap by the
product of peak intensities p; - p;. Masses are rounded to 5 dec-
imal points.

The combinatorial approach was run for 16 epochs per thread. Each epoch used

1000 iterations. The total real runtime of the analysis was 4 hours for d = 16 and

10.6 hours for d = 64. The acceptance rate eventually decays, and similar results

may be achievable with lower runtimes.
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Known a priori?

Monoisotopic mass
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1.02500
1.94080
12.01713
18.00000
30.02305
42.02500
57.00000
96.05000
101.04583
102.05000
113.06250
114.05188
128.06040
162.06580
180.08750
240.10286

Neutron

Water

G
T

I/L
N
K/Q

Hexose

Yes

No

No

No

No
No
No
Yes

1.00860

18.01056

57.02146

101.04767

113.08406
114.04292

128.09496,/128.058578

162.04746

Table 3.14 Results when running the combinatorial approach on 1,891 gly-
coconjugate spectra with d = 16. Masses, they are reported
in ascending order. Masses are rounded to 5 decimal points.
Masses known a prior: are labeled; these masses were not pro-
vided to the model, but instead are known true positives in
advance.
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Figure 3.4 Subgraphs with an amino acid chain matching glyco-
sylation sites. Three spectra (a,c,e) and their corresponding
de novo graphs (b,d,f) found using the combinatorial approach.
The top two spectra contain the amino acid chain LNGNL and
the bottom contains the amino acid chain TLNTT. Graphs use
red edges to mark charge z = 1, green edges for z = 2, and
blue edges for z = 3. The nodes colored in — yellow represent
nodes touched by the amino acid chain. Figures (a,b) came
from spectrum titled “Locus:1.1.1.8405.3” | figures (c,d) came
from spectrum titled “Locus:1.1.1.8036.2”, and figures (e,f) came
from “Locus:1.1.1.2523.2.”
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3.5 Edge-maximal isomorphic subgraphs on embeddings in Z¢

3.5.1 Solving edge-maximal isomorphic subgraph via cross-correlation

To test our methods we generated pairs of random graphs embedded in Z2. In

Table we compared the runtimes over pairs of graphs with similar amount of

nodes. The brute force method iterated over all possible node bijections in the two

graphs and counted the matching edges, which has exponential time complexity. The

grid size is the maximum placement for a node; this is important because it controls

the size of the adjacency tensor. The FFT approach is significantly faster and scales

better for number of nodes while having 100% accuracy; however, the FFT is a

divide and conquer algorithm which scales in speed and memory with the grid size

(Table [3.16)).

Embedding

32x32
32x32
32x32
32x32
32x32

Vil [Vl

8
9
10
12
13

Brute Force

0.10575
1.04943
11.8022
73.87356
147.53414

FFT

0.0052809
0.0053590
0.0053147
0.0052950
0.0052731

Table 3.15 Runtimes to find edge-maximal isomorphic subgraph match-
ings on graph pairs with different numbers of vertices, |Vi|, |Va].
Brute force uses all possible node bijections, whereas FFT uses
FFT-based cross-correlation on the Z¢ embedding.

Embedding Number Nodes

32x32 100
64x64 100
128x128 100
256x256 100
512x512 100
1024x1024 100
2048x2048 100

Time

0.06189
0.16379
0.69817
3.12268
18.8930
102.573
500.327

Embedding
256x256
256x256
256x256
256x256
256x256
256x256
256x256

Number nodes
100
200
300
400
500
600
700

Time
3.11040
6.20085
9.27673
12.6026
15.59189
18.4465
22.6432

Table 3.16 How FFT-based cross-correlation runtimes scale for finding
edge-maximal isomorphic subgraphs between a pair of graphs
with different embedding tensor dimensions and different num-
bers of nodes.
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Figure 3.5 LSH matching quality for graphs embedded € Z? using 4-bit
shift-invariant LSH. The left panel is run on proper supergraph—
subgraph pairs, where the larger graph has 120 nodes and 812
edges. In this panel, subgraphs were found by randomly remov-
ing edges. The right panel compares, the right panel is run on
graph pairs where both have 120 nodes and 812 edges. In this
panel, the second graph was found by removing edges and then

adding random new edges.

LSH was performed 256 times to

empirically estimate the probability that the graphs were binned

together.

3.5.2 Finding graph pairs with highly isomorphic subgraphs via LSH

Figure uses random graphs to demonstrate the effectiveness of the power spec-

trum as feature space for a shift-invariant LSH. Note that small changes to a graph

(e.g., removing an edge) can correspond to a non-trivial angle change between the

two graphs in their power spectrum embeddings € R™; thus, even similar graphs may

be separated by a plane. For this reason, we can run a few full repetitions of LSH;

the probability of a close match not colliding in at least one repetition will become

small. The approach is trivially parallelizable; although we do not exploit that in this

manuscript, it can mitigate the runtime penalty of performing replicate LSH runs.

Table demonstrates that the LSH approach achieves a significant reduction in

runtime while consistently finding graphs with large isomorphic subgraph matchings.
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Avg. Nodes
115
143
166
206
213
158
101

Table 3.17

Avg. edges
200
300
501
401
600
500
502

Hashes  Total

256 60
256 47
256 65
256 42
256 69
512 151
1024 78

Match rank
50
29
30
28
40
90
57

FFT time
228.79458
291.55601
387.70664
372.05800
359.85256
335.60315
333.87344

LSH time
47.97628
53.53428
86.29910
64.14751
82.97930
163.0908
163.9954

69

Hash time
20.70615
26.15016
35.68782
33.16835
33.27186
60.66355
110.6452

Finding graph pairs with large edge intersection. 32 graphs (496
possible comparisons) were run using FFT between all pairs and
using a 4-bit LSH hash. “Total” indicates the number of pairs
that had non-trivial subgraph isomorphisms. “Match rank” in-
dicates the number of these top graphs recovered by LSH (e.g.,
3 indicates that the largest 3 graphs were recovered by LSH).
“LLSH time” takes into account the time to calculate the hashes
as well as the subsequent pairwise comparisons in each hash bin;
“Hash time” reflects only the hashing step (which can be reduced
significantly using parallelization), to underscore the ability to
improve the LSH approach.
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CHAPTER 4 DISCUSSION

4.1 Convex optimization

4.1.1 Minimal quadratically constrained linear program (M2.1.3)

From M2.1.3| this quadratically constrained linear program works well for samples
that are much too small to be interesting. Unfortunately, the data do not become

interesting until they are much too large to be run using this model.

4.1.2 Lagrangian relaxation (M2.1.4))

Before we applied Lagrangian relaxation, we attempted to relax the problem by
allowing the edge indicator variables to be continuous in [0,1]. If this worked, we
would have a linear program with only continuous variables, which can be solved
efficiently. Unfortunately, this can not work as a relaxed eE?k variable in constraint
is able to cheat the system. It was allowed to shrink as small as it could so that
the middle term would be less than e regardless of A,. Then A, was free to be any
value.

This first Lagrangian relaxation [2.1.5| formulation was not much of an improvement
over the quadratically constrained LP. This was to be expected as it is still a QP which
is very difficult to solve.

The Lagrangian multipliers helped for some runs, but they often would not converge

for many iterations, causing terrible runtimes. However, the solver would often get
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an alphabet with several correct masses (correct meaning there were two peaks whose
mass difference was within € of the alphabet mass) after the first iteration, but this

alphabet would often change completely.

4.1.3 Minimizing over indicator variables (M2.1.5])

The second model to use Lagrangian relaxation was created with the purpose
of minimizing over the size of the alphabet and not the magnitude of the alphabet
masses. This did have the intended effects because the alphabet when optimized
over the indicator variables had larger values. Larger mass values are not necessarily
desired, but there should not be a bias against them.

The major problem with the previous model was the speed and lack of convergence

with the Lagrangian multipliers, neither of these were fixed with this new model.

4.1.4 An edge-centric model: incentivizing larger graphs (M2.1.6))

The third model to use Lagrangian relaxation was modified from the previous model
simply by adding C/(3_, egg ,) to the objective function. This certainly helped as
this model turned on over twice as many edges and, importantly, incentivised more

unique masses.

4.1.5 Removing the quadratic constraint

Using a trick for replacing a quadratic term in which one variable is a binary
indicator variable and the other is continuous, we were able to make a problem with
only linear constrained.

There are still binary edge indicator variables so our problem is a MILP. Also, most

of the variables before removing the quadratic constraint were the edge indicator vari-
(

ables. There is one new z; ), J, k continuous variable for each edge indicator variable,
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so there are almost twice as many variables as before. There are also four more con-
(

straints for each of the new z/), 7, k variables. This significant increase in variables

and constraints dampens the impact made by removing the quadratic constraint.

4.1.6 Maximize number of edges and finding unique masses through

constraints (M2.1.9))

In model 2.1.9 we switched solvers from Mathematica to CPLEX. For this model
the last constraint was added which dissallowed two alphabet masses to cover the
same peak pair. This worked well as all alphabets masses are fully unique, so this
model was a success in this aspect. Similar to previous models, the speed is still
lacking. Also, minimizing over the indicator variables b; was nullified by maximizing
the amount of edge variables turned on and a correct value of v which would allow

some, but not all, masses was very hard to tune.

4.1.7 Two step method of finding the best As and then minimizing the

alphabet (M2.1.10

This was by far the best model for a standard MILP implementation. Finding
only one mass value at a time meant drastically reducing the amount of alphabet
mass variables and edge indicator variables. These quantities are further reduced
each iteration as peak pairs were taken away by previously found masses.

We want to optimize over hundreds of peaks across hundreds or thousands of spec-
tra. Despite the massive speed-up over previous models, the model was still not fast
enough. Since the first pass optimization was never fast enough, the second pass was

never implemented.
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4.1.8 Maximum vertex cover approach (M3.2.7))

The bipartite graph optimization model was by far the best convex optimiza-
tion model. It was fast enough to find an alphabet of 8 masses on the glycoconjugate
dataset which consists of 62 spectra with different charges 1,2, and 3 in less than half
an hour.

The model was left too unconstrained to find a great alphabet. For example, one
alphabet mass can be a multiple of another which leads to masses like 23.8847 and
35.91240 which are very close to twice carbon (12.00Da) and twice water (18.01057).
In the future we may revisit this model to see if we can efficiently encode some further
constraints such as no redundant masses or disallowing one mass to be the sum of
two others, etc.

Despite clever methods such as branch-and-bound, binary linear programs are still
NP-hard and become a nightmare for large problem sizes, for this reason we aban-
doned this model as well.

We attempted to relax the bipartite graph optimization by letting the binary vari-
ables be continuous variables between 0 and 1. This ILP has a linear objective function
and linear constraints so a true LP version could potentially be very fast. However,
we were not able to get the edge indicator variables to be pushed into {0,1}. This is
because constraints and want to keep many edge indicators at at low, but

non-zero, value.

4.2 A max-flow/min-cut formulation

Though we did not find any great results for the graph-cut models, we still hold
out hope. Intuitively, they feel like a good fit. We can weight edges between A nodes
and the USED and NOT USED nodes by how well the alphabet mass connects peaks
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in the data and weight edges between A nodes based on how many pairs of adjacent
edges they share. Then use an efficient min-cut algorithm to solve the problem.
Unfortunately, it has been hard finding the right model.

For earlier models, it became apparent that in order for the model to work, the «
and S values could not be uniform across the model. This caused the models output
to be based entirely on which is larger: « times the number of all possible masses or
the sum of all edge weights p;p;. If the former is larger, then the alphabet would be
empty. If the latter is larger, then the alphabet consist of all possible masses.

In the future we hope to work more on these graph-cut models. None of these mod-
els may be correct, but we believe graph-cuts should somehow solve the minimum
alphabet problem. One forseeable problem is having datasets which can form millions
of possible alphabet masses. In this case, it may be best to solve each spectra sepa-
rately then adjust all spectra’s edge weights based on shared alphabet mass values.

After many iterations the edge weights may converge to a well defined alphabet.

4.3 Markov chain Monte Carlo

4.3.1 An alphabet for 62 expert-curated spectra including neutron, wa-

ter, sugars, and more

Even though no masses or chemical knowledge were provided to the combinatorial
approach and we only expected four sugar resides and the neutron mass in advance,
our approach finds masses close to water and ammonia on the 62 expert-curated
spectra. The mass we do find that is within € of the mass of a Neutron is also within
€ of the mass difference caused by deamidation. Deamidation is a modification to
amino acids where a nitrogen and a hydrogen are replaced by an oxygen with a mass

difference of 0.984Da. These are both plausible, particularly since this data came

www.manaraa.com



75

from a urine sample. We also find masses close to Hexose and to HexNAc in this
data. While the non-combinatorial approach does not assign a high rank to HexNAc,
the combinatorial approach finds it with d = 8 because the connectivity improvement
of HexNAc is superior enough to justify its low frequency and incidence to low-
intensity peaks. Interestingly, we also find a mass at 88.01555Da. This matches the
difference between several pairs of saccharide oxonium ions [36]: Neu5Ac (292.103Da)
- HexNAc™ (204.087Da) = 88.0162Da, [NeubAc-H,O] " (274.092Da) - [HexNAc-H,O]
(186.076Da) = 88.0159Da. Those are instances where the alphabet mass connects
two whole glycan oxonium ions, but it also connects [HexNAc-2H,0|" (168.066Da) to
256.082Da and [HexNAc - CoH,O5]" to 232.081Da. It appears that NeubAc generates
a series of oxonium ions 292.103Da, 274.092Da, 256.082Da, and 232.081Da. The
second and third result from the loss of a water molecule and the last results from the
loss of two carbons. HexNAc generates series of oxonium ions 204.087Da, 186.076Da,
168.066Da, and 144.065Da. Similar to NeubAc the first two mass shifts are due to
the loss of water molecules and the final shift is due to the loss of two carbon.

The other two unknown masses are 30.01058Da and 42.01071Da. 30.01058Da is
very close to the isotopic mass of HoCO, 30.010565Da. There are a few different
things which can create a neutral loss of H,C'O: the molecule hydroxymethyl, a
serine and glycine substitution, a glycine and serine substitution, or a formaldehyde
induced modification[35].

Similar to 30.010565Da, there are a few known modifications which could create
the 42.01071Da neutral loss: a glutamic acid and serine substitution or acetylation
[35]. Similar to 88.01555Da, there may be other analytes or differences between two
other mass changes which form 30.010565Da and 42.01071Da.
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4.3.2 An alphabet for 1,891 glycoprotein standard spectra including

neutron, amino acids, sugars, and more

On the 1,891 glycoprotein standard spectra, our approach discovers multiple amino
acid masses without prior knowledge that are in the samples contained peptides.
For d = 16 the combinatorial approach found glycine, arginine, and one or both
of Lysine/Glutamine when neither non-combinatorial approach did. However, the
weighted non-combinatorial approach found alanine which the combinatorial ap-
proach did not. Both the combinatorial and non-combinatorial approaches found
isoleucine/leucine and threonine.

the fact that the combinatorial approach finds glycine and arginine is important
because the amino acids in the alphabet can form the chains LNGNL and TLNTT.
LNGNL covers the 241° through 245" amino acids in the peptide sequence which
includes the glycosylation site at the 244" amino acid (the second asparagine in
LNGNL ) in the sequence [33]. Similarly, TLNTT covers the 226" through the 230"
amino acids in the peptide sequence which includes another glycosylation site occurs
at the 228" amino acid in the peptide sequence.

Both of the 30.02305Da and 42.02500 mass differences are within e of the mass
differences discussed in the previous section so all possible explanations of those mass
differences apply here as well. Similar to the alphabet for the 62 expert-curated
spectra, the mass found which is within e of a neutron mass is also within e of

deamidation.

4.3.3 Future improvements

Possible improvements to the model include parameterizing a penalty on masses

too close to one another or even triplets of masses where A; ~ Ay + Asz. The user
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could supply a list of peaks in which the program should favor or be forced to connect
such as a precursor peak.

Since the method allows for us to seed the initial masses from the combinatorial
approach, there will probably be benefit to seeding them with the results of the non-
combinatorial approach or to seeding them with available prior knowledge (i.e., the
neutron mass and the four sugar residues) or with any masses known to be in the
sample a priori.

Neither dataset was charge deconvolved. However, charge deconvolution would

Ag

allow the graph building method to only connect peaks by =* when the two peaks
have charge equal to z.

An approach to making our method semi-supervised could be as follows: First, run
the program as it currently is to get an original alphabet. Second, try and find a
known molecule in the alphabet (i.e. through mass decomposition) and populate a
new alphabet with a family of molecules based on this known molecule. For example,
if you blindly find an amino acid, then rerun the program with an alphabet larger
than 21, seeding the first 21 with the amino acid masses (use “-f” flag to protect
the seeded alphabet masses). Similarly, if you blindly find a sugar, then rerun the
program while seeding the alphabet with sugar masses. This could be particularly

useful for finding something like a post-translational modification on a peptide once

an original alphabet containing amino acids is found.

4.3.4 Recurring subgraphs

By finding an alphabet A and subgraphs that have a high degree of isomorphism
to one another (Figure and Figure , we find results consistent with stan-
dard sugar trees [7]. Because we expect a good alphabet A to produce connected

components from different spectra with large isomorphic subgraphs, then it may be
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possible to invert this notion: by first clustering spectra that have similar peaks (up
to mass shifts), then we could possibly use those clustered spectra to help estimate
the alphabet A.

The convolutional /LSH approach proposed here may also be used to find spectra
containing graphs with graph products [9]. This may be useful for inferring chemical

structure from the graphs built in this paper.

4.4 Edge-maximal isomorphic subgraphs on embeddings in Z?

When considering a specific embedding pair, the FFT-convolution-based approach
for finding edge-maximal isomorphic subgraphs is superior to the brute force method
even for very small graphs and scales much better.

When considering several pairs, the results of 256 4-bit hashes shows the LSH
discriminates among graphs. It is more likely to bin graphs with larger edge-maximal
isomorphic node bijections than smaller. In this manner, the shift-invariant LSH
approach reduces the runtime while still finding a significant quantity of the graphs
with large subgraph isomorphisms.

Figure demonstrates that the hashing function is effective at finding similar
graphs together; however, the probability of two graphs being split by a plane given
the number (or percentage) of isomorphic edges similarity has only been observed em-
pirically and has not been derived and could prove useful for improving the hashing
method. A theoretical bound on this probability could help develop further embed-
dings for graphs that accomplish superior LSH discrimination in fewer hashes.

We use the power spectrum in order to bin the graphs, but this has a few flaws.
When an FFT is converted to a power spectrum, the phase information is lost. For

this reason, it is possible that two different graphs may produce the same power
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spectrum. An approach that uses a different feature space for LSH or that keeps
this discarded phase information in a shift-invariant manner would eliminate these
spurious collisions. One option that would also reduce the need for a dense embedding
would be to store the graph in a fully sparse manner and then compute several random
frequency components of the Fourier transform; different graphs that coincidentally
produce the same power spectrum may not overlap at other frequencies not visited
by the FFT.

Our shift-invariant LSH method assumes the graphs are in the proper orientations
relative to each other to result in the maximal isomorphic subgraph matching. There
may be some way we can overcome this assumption, one possible avenue may be to
project onto a unit sphere, where discretization over angles would permit rotation
instead of shifting. One-dimensional embeddings only have two possible orientations
(left-to-right and right-to-left), and so the approach proposed here already solves the
oriented problem with d = 1.

While everything here has been on the discussion of Euclidean graphs embedded in
74 it is possible to use similar methods on graphs embedded in R? by performing naive
discrete d-dimensional Fourier transform on fully sparse adjacency tensor rather than
dense d-dimensional FFT. Alternatively you could bin the graphs and use as vectors;

this has been done successfully on de novo graphs from mass spectra, which can be

embedded in R![37].
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CHAPTER 5 SOURCE CODE AVAILABILITY

Links to resources for source code will attempt to be kept stable at https://

patkreitzberg.com. Specific source code repositories are mentioned below:

Mass spectrometry alphabet projection

The source code and data used for Markov chain Monte Carlo methods can be

found at https://bitbucket.org/orserang/peak-bagger| or https://|

PatKreitzbergRbitbucket.org/PatKreitzberqg/peak-bagger.qgit. This

includes C++ code for both the non-combinatorial and combinatorial approaches,
python scripts for plotting and annotating spectra, and python scripts for per-
forming LSH hashing to find recurring subgraphs in the spectra. Code and data are

provided with an MIT license.

Edge-maximal isomorphic subgraphs on embeddings in Z¢

Source code (MIT license) is available here: https://PatKreitzberg@bitbucket.

lorg/PatKreitzberg/edge-maximal-subgraph—-isomorphism.git.
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